If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4z^2+16z=0
a = 4; b = 16; c = 0;
Δ = b2-4ac
Δ = 162-4·4·0
Δ = 256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{256}=16$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-16}{2*4}=\frac{-32}{8} =-4 $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+16}{2*4}=\frac{0}{8} =0 $
| 15x+2=7x+34 | | 4z62+16z=0 | | 11(7c-1)-8=75c+11 | | 15.3-y=12.017 | | -10x*x*x-25+1=0 | | 2z+9.7-7z=-5.15 | | C=38.63+0.25x | | -35(14-2r)=-5(8+r) | | 4+6x+2x=20 | | 3(x-2)=5=2(x+3) | | 11y-5=28 | | 6x+8=122 | | 7n+2+3n-(-4)=109 | | (x+2)(3x-4)=(x+5)(2x-5) | | -4x-10+3x=-15 | | L,N=6x-5;L,M=x+7;M,N=3x+20 | | 9x+3x=+4x | | 4-7/3x=9 | | 3(q+3/4)=2 | | 4p-12=-2p-8 | | (x+46)(x+45)=0 | | 66=3x+3(×+4) | | (X/3)+(x/7)=10 | | -6(3x+3)=-18x-18 | | 4p-12=-2-8 | | 20-6x+4=30-3x | | -3(y+5)^2=-12 | | 3(x+2)-6=4(x+7)-x | | 20+5c=10 | | y^2+11y+8=0 | | 53=7x+2x+8 | | 7|x+8|+8=6 |